
1

A Software Safety Certification Tool for
Automatically Generated

Guidance, Navigation and Control Code
Ewen Denney
USRA/RIACS

NASA Ames Research Center, Moffett Field, CA 94035
edenney@email.arc.nasa.gov

Steven Trac

University of Miami, Coral Gables, FL 33146
strac@mail.cs.miami.edu

Abstract—Model-based1,2 design and automated code
generation are being used increasingly at NASA. Many
NASA projects now use MathWorks Simulink and Real-
Time Workshop for at least some of their modeling and
code development. The trend is to move beyond simulation
and prototyping to actual flight code, particularly in the
Guidance, Navigation, and Control domain. However, there
are substantial obstacles to more widespread adoption of
code generators in such safety-critical domains. Since code
generators are typically not qualified, there is no guarantee
that their output is correct, and consequently the generated
code still needs to be fully tested and certified. Moreover,
the regeneration of code can require complete
recertification, which offsets many of the advantages of
using a generator. Indeed, manual review of autocode can be
more challenging than for hand-written code. Since the
direct V&V of code generators is too laborious and
complicated due to their complex (and often proprietary)
nature, we have developed a generator plug-in to support the
subsequent certification of the code that is generated.
Specifically, the AutoCert tool supports certification by
formally verifying that the generated code is free of
different safety violations, by constructing an independently
verifiable certificate, and by explaining its analysis in a
textual form suitable for code reviews. This enables
missions to obtain assurance about the safety and reliability
of the code without excessive manual V&V effort and, as a
consequence, increases the acceptance of code generators in
safety-critical contexts. The generation of explicit
certificates and textual reports is particularly well-suited to
supporting independent V&V. The key technical idea of our
approach is to exploit the idiomatic nature of auto-generated
code in order to automatically infer logical annotations.
These allow the automatic formal verification of the safety
properties without requiring access to the internals of the
code generator. The approach is independent of the
particular generator used but is currently being adapted to
code generated using MathWorks Real-Time Workshop, an
automatic code generator that translates from
Simulink/Stateflow models into embedded C code.

1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #1186, Version 5, Updated November 16, 2007

TABLE OF CONTENTS

1. BACKGROUND... 1
2. CASE STUDY: VERTICAL MOTION SIMULATOR .. 6
3. INTEGRATION WITH MATLAB ENVIRONMENT 6
4. CONCLUSIONS... 10
REFERENCES... 11

1. BACKGROUND

We begin in this section with some necessary background
on automated code generation and different approaches
which can be taken to V&V. We then give the background
to our certification approach. In Section 2, we describe our
case study with the Vertical Motion Simulator. Next,
Section 3 gives the design of the AutoCert plug-in,
concentrating on the integration with the Matlab
environment. Finally, Section 4 summarizes the tool
capabilities and describes our plans for future development.

Automated Code Generation

Model-based design and automated code generation (or
autocoding) are being used increasingly at NASA. They
promise many benefits, including higher productivity,
reduced turn-around times, increased portability, and
elimination of manual coding errors. There are now
numerous successful applications of both in-house custom
generators for specific projects, and generic commercial
generators. One of the most popular code generators within
NASA is the MathWorks Real-Time Workshop [8] (with
the add-on product Embedded Coder), an automatic code
generator that translates Simulink/Stateflow models into
embeddable (and embedded) C code. By some estimates,
50% of all NASA projects now use Simulink and Real-Time
Workshop for at least some of their code development.
Code generators have traditionally been used for rapid
prototyping and design exploration, or the generation of
certain kinds of code (user interfaces, stubs, header files
etc.), but there is a clear trend now to move beyond
simulation and prototyping to the generation of production
flight code, particularly in the Guidance, Navigation, and

2

Control domain. Indeed, the prime contractor for the Orion
Spacecraft (NASA’s Crew Exploration Vehicle) is making
extensive use of code generators for the development of the
flight software.

Nevertheless, there remain substantial obstacles to more
widespread adoption of code generators in such safety-
critical domains, principally, how the generated code should
be assured. Ideally, the code generator, itself, should be
qualified. However, this is a non-trivial and expensive
process, and is therefore rarely done. Moreover, the
qualification is only specific to the use of the generator
within a given project, and needs to be redone for every
project and for every version of the tool. Also, even if a
code generator is generally trusted, user-specific
modifications and configurations necessitate that V&V be
carried out on the generated code [6]. Since code generators
are typically not qualified, there is no guarantee that their
output is correct, and consequently the generated code still
needs to be fully tested and certified.

There are generally two workarounds for dealing with code
generator bugs. Sometimes there is a model workaround -
i.e., modify the model. This will likely not always be an
option. Moreover, some bugs can not be easily characterized
at the model level - that is, it is difficult to say which
combinations of model elements give rise to these bugs, let
alone how to fix the models.

The second option is simply to upgrade to a newer version
of the generator. However, any qualification effort which
has been carried out on the previous working version is now
lost, the code must be recertified, and the entire toolchain
must now essentially be upgraded. This can offset many of
the advantages of using a generator.

Moreover, advocates of the model-driven development
paradigm claim that by only needing to maintain models,
and not code, the overall complexity of software
development is reduced. While it is undoubtedly true that
some of burden of verification can be raised from code to
model, it should be acknowledged that, in fact, there are
additional concerns and, indeed, more artifacts in a model-
based development process. Users need to be sure that the
code implements the model, that the code generator is
correctly used and configured, that the target adaptations are
correct, that the generated code meets high-level safety
requirements, that it is integrated with legacy code, and so
on. There can also be concerns with the understandability
of the generated code. Some understanding of why the code
is safe, therefore, helps the larger certification process.
Automated support for V&V that is integrated with the
generator can address some of these complexity concerns.

Furthermore, certification requires more than black box
verification of selected properties, otherwise trust in one tool
(the generator) is simply replaced with trust in another (the
verifier). Finally, the direct V&V of code generators is too
laborious and complicated due to their complex (and often

proprietary) nature, while testing the generator itself can
require detailed knowledge of the transformations it applies
[10, 11].

Automated code generation, therefore, presents a number of
challenges to software processes and, in particular, to V&V,
and this leads to risk. The AutoCert tool we describe here
mitigates some of that risk.

Automated Code Certification

In contrast to approaches based on directly qualifying the
generator, itself, or on testing of the generated code, we
instead propose a generator plug-in to support the
subsequent certification of the code created by the generator.
Specifically, our tool supports certification by formally
verifying that the generated code is free of a range of safety
violations, by constructing an independently verifiable
certificate, and by explaining its analysis in a textual form
suitable for code reviews. This enables missions to obtain
assurance about the safety and reliability of the code without
excessive manual V&V effort and, as a con-sequence,
increase the acceptance of code generators in safety-critical
contexts. The generation of explicit certificates is
particularly well-suited to supporting independent V&V.

The tool belongs to the category of techniques known as
formal methods, which refers to techniques that
exhaustively search for errors, in contrast to approaches
based on simulation and testing. The particular approach
described here can be seen as carrying out a symbolic
execution of the generated source code in order to prove
properties about the code, rather than the model.

We follow the tradition in formal methods of referring to
techniques which conclusively demonstrate the absence of
bugs (rather than simply search for existing bugs) as
performing certification. However, in an IV&V context, we
must consider the larger picture of certification, of which
formal verification is a part, and therefore produce assurance
evidence which can be checked either by machines (during
proof checking) or by humans (during code reviews).

The key technical idea of our approach is to exploit the
idiomatic nature of auto-generated code in order to
automatically infer logical annotations. Annotations are
crucial in order to allow the automatic formal verification of
the safety properties without requiring access to the
internals of the code generator, as well as making a precise
analysis possible. The approach is independent of the
particular generator used, and need only be customized by
the appropriate set of patterns.

Now, considering the case where no bugs are detected, it is
guaranteed that the auto-generated source code is free of
violations, and we can compare the time taken to review and
certify the auto-generated code by hand, with the time taken

3

to do it with support from AutoCert. This support consists
of automatically checking that the code complies with the
specified safety properties, generating an explanation for
why it complies, and tracing this explanation to code,
model, and verification artifacts.

Real-Time Workshop has extensive tracing capabilities.
However, optimization can obscure connections between
model blocks and corresponding code fragments, by
merging and compressing functionally separate fragments.
As part of its analysis, AutoCert “reverse engineers” the
code, sifting through potentially overlapping fragments to
create links from the code to high-level functional
descriptions (in an auto-generated safety document).

Rather than use a separate third-party analysis tool, we are
designing a plug-in that is tightly coupled to the Real-Time
Workshop code generator. We adopt the title,
AutoCert/RTW (AutoCert for short), for this safety
certification plug-in. Following the plug-in philosophy, the
tool acts as an extension of RTW, and is therefore closely
integrated from the user’s perspective, but the
implementation does not require a deep integration with the
internal operations of RTW.

The following sections describe the components of our
system: the style of safety properties which we check, the
inference of annotations, the creation and discharge of
verification conditions, the generation of safety documents,
and the overall system architecture.

Safety Properties—AutoCert supports certification by
formally verifying that the generated code is free of
violations of specific safety properties. In our approach, we
distinguish between various kinds of safety properties.
Language-specific properties concern those safety aspects of
the code which only depend upon the semantics of the
programming language. Examples include memory safety
(e.g., absence of array bounds violations), variable
initialization, and scoping requirements. Domain-specific
properties relate to details which are specific to the use of a
given code generator in a particular domain. For example,
all values of x for an interpolation table (x,y) must be
disjoint and in increasing order. Finally, project-specific and
application-specific properties talk about guarantees for a
family of applications or a single application, respectively.
For example, flight-rules can be considered to comprise
typical project-specific properties.

A range of safety properties, including initialization safety,
and absence of out-of-bounds array accesses, have already
been formalized and can be used with our algorithm.
Initialization safety ensures that each variable or individual
array element has been explicitly assigned a value before it
is used. Array-bounds safety requires each access to an
array element to be within the specified upper and lower
bounds of the array, and is a typical example of a language-
specific property. Matrix symmetry requires certain two-

dimensional arrays to be symmetric. Sensor input usage is a
GN&C specific property which is a variation of the general
init-property guaranteeing that each sensor reading passed
as an input to a state estimation algorithm is actually used
during the computation of the output estimate. Frame safety
checks that each variable is in the correct coordinate frame,
and that coordinate transformation are correctly applied.
Another example, from the data analysis domain, ensures
that certain one-dimensional arrays represent normalized
vectors, i.e., that their contents add up to one. Details of
how safety properties are formalized in our approach are
omitted here.

Hoare-Style Safety Certification—Our certification approach
uses the well-known Hoare-style framework to prove the
safety properties. This is based on proof rules that derive
triples of the form P {C} Q, meaning “if pre-condition P
holds before execution of statement C, then Q holds after”.
For each safety property and each statement a corresponding
rule is given. A verification condition generator (VCG) then
applies the rules to a program, which produces a number of
logical statements or proof obligations. Unfortunately, the
Hoare-style framework requires a large amount of logical
annotations attached to statements of the code, which
describe pre- and post-conditions and loop invariants. This
has so far limited its practical applicability. However, it is
important to observe that correctness of the proofs does not
depend on correctness of the (untrusted) annotations; rather,
they can be seen as hints which guide the proof process.
This allows us to automatically infer the annotations without
compromising the safety guarantees provided by the
certification tool.

For each notion of safety the appropriate safety property and
corresponding policy must be formulated. This is usually
straightforward; in particular, the safety policy can be
constructed systematically by instantiating a generic rule set
that is derived from the standard rules of the Hoare calculus
[1]. The basic idea is to extend the standard environment of
program variables with a “shadow” environment of safety
variables which record safety information related to the
corresponding program variables. The rules are then
responsible for maintaining this environment and producing
the appropriate verification conditions (VCs). Safety
certification then starts with the outermost (i.e., at the end of
the program) postcondition true and computes the weakest
safety precondition (WSPC), i.e., the WPC together with all
applied safety conditions and safety substitutions. If the
program is safe then its WSPC will be provable without any
assumptions.

Annotation Inference—For arbitrary (i.e., manually written)
code it is impossible to automatically generate the required
annotations and most annotations must be provided by the
user—a prohibitively tedious and costly task. However, a
code generator like RTW produces highly structured and
idiomatic code. Consequently, only a few, standardized
annotations need be used. Intuitively, idiomatic code
exhibits some regular structure beyond the syntax of the

4

programming language and uses similar constructions for
similar problems. Even manually written code already tends
to be idiomatic, but the idioms used vary with the
programmer, and are much less regular. Automated
generators eliminate this variability because they derive
code by combining a finite number of building blocks.

The idioms determine the interface between the code
generator and the inference algorithm. For each generator
and safety property, our approach thus requires a
customization step in which the relevant idioms are
identified and formalized as patterns. Note that neither
missed idioms nor wrong patterns can compromise the
assurance given by the safety proofs because the inferred
annotations remain untrusted. They can, however,
compromise the “completeness” of the approach in the
sense that safe programs can fail to be proven safe, and in
our experience, a few iterations can be required to identify
all patterns. Note also that the idioms can be recognized
from a given code base alone, even without knowing the
templates that produced the code. This gives us two
additional benefits. First, it allows us to apply our technique
to black-box generators. Second, it also allows us to handle
optimizations: as long as the resulting code can still be
characterized by patterns, neither the specific optimizations
nor their order matter.

We have developed a generic pattern language to describe
these code idioms. The patterns let us define annotation
schemas to encapsulate certification cases for matching code
fragments. We omit details of the schema language here. An
annotation schema compiler takes a collection of annotation
schemas tailored towards a specific code generator and
safety property, and compiles it down into a customized
annotation inference algorithm. The annotation schemas are
then applied using a combination of planning and aspect-
oriented techniques to produce an annotated program, which
can then be certified in the Hoare-style framework. We can

thus check conformance of generated code with a range of
safety properties fully automatically. As an example,
consider a matrix that is initialized using a nested loop. In
order to verify that the code completely initializes the
matrix, we need at least four annotations: inner and outer
loop invariants, which formalize “snapshots” of the matrix
initialized “up to that point”, and inner and outer post-
conditions, which formalize successful initialization of all or
part of the matrix. Different annotations are required for
row-major and column-major memory layouts. Additional
complications arise when information from the initialization
block needs to be propagated to parts of the code where it is
needed, taking into account scope, control flow, and context.
However, although the resulting annotations can become
quite complex, several underlying principles can be used to
generate them automatically. The only input which is
needed is the basic pattern of two-dimensional iteration
(which captures both memory layouts), and a definition of
the initialization safety property. We have a library of
schemas which allows us to certify code generated by RTW
from a range of models, as well as by in-house code
generators. We have used the tool to analyze code produced
from GN&C models consisting of both Simulink and
Embedded Matlab, from several projects, including the
Vertical Motion Simulator described here (Section 2).

VC Processing—A Verification Condition Generator (VCG)
traverses the annotated code and applies the rules of the
calculus to produce Verification Conditions (VCs). These
are logical formulas which need to be shown to ensure
compliance with the safety property. The VCG simply
implements the semantics of the programming language and
the proof rules of the safety policies. The VCs are then
simplified, completed by an axiomatization of a background
theory and given as proof obligations to an off-the-shelf
high-performance automated theorem prover (ATP). If all
obligations are proven it is guaranteed that the safety
property is obeyed and the resulting proofs comprise the

Figure 1 – System Architecture

5

evidence for that. The VCG can be seen, therefore, as
performing a compositional verification of the property.

We use automated theorem proving to check the VCs. In
contrast to forms of theorem proving which are interactive
(mainly tactic-based higher-order provers), we use
customized domain theories of logical axioms, and scripts,
so that the prover is essentially used as a decision procedure,
and its use is completely hidden from the user. We use the
TPTP syntax [12] which lets us use a wide range of the off-
the-shelf first-order provers.

System Architecture—Figure 1 shows the overall system
architecture of our certification approach. At its core is the
original (unmodified) code generator (in this case, Real-
Time Workshop) which is complemented by the annotation
inference subsystem, including the pattern library and the
annotation schemas, as well as the standard machinery for
Hoare-style techniques, i.e., VCG, simplifier, ATP, domain
theory, and proof checker. The analysis proceeds by first
translating the parsed C code into a simplified intermediate
language. The logical inference is carried out on this
language. The inference engine also supplies information to
the safety document generator, which renders this along
with the code. The architecture distinguishes between
trusted and untrusted components, shown in Figure 1 in red
(dark grey) and blue (light grey), respectively. Trusted

components must be correct because any errors in them can
compromise the assurance provided by the overall system.
Untrusted components, on the other hand, are not crucial to
the assurance because their results are double-checked by at
least one trusted component. In particular, the assurance
provided by our approach does not depend on the
correctness of the two largest (and most complicated)
external components: the original code generator, and the
ATP; instead, we need only trust the safety policy, the
VCG, the domain theory, and the proof checker. Moreover,
the annotation inference subsystem (including the pattern
library and annotation schemas) also remains untrusted
since the resulting annotations simply serve as “hints” for
the subsequent analysis steps. Any error in an annotation
would lead to an unprovable VC and hence be caught by the
ATP. We will omit further technical details. These
components and their interactions are described in more
detail in publications [1, 3, 4, 5].

Safety Documentation—Rather than act as a black-box
verification tool which provides a simple pass/fail result,
AutoCert provides a detailed safety documentation report.
The report is generated from the analysis of the code and
provides a high-level traceable explanation of why the code
complies with the specified safety property. The report is
intended to help users in understanding the generated code
(often a particular concern for automatically generated code,
and to support the manual process of code review. Also, by
explaining the reasoning behind the certification process,
there is less of a need to trust the tool. The report can draw
attention to potential certification problems.

If we suppose that a diligent code reviewer must
“rediscover” all the information which is automatically
generating by AutoCert, in order to construct a watertight
justification of safety, even for a small program this can
result in substantial savings in effort.

Figure 2 shows an excerpt of some documentation for the
certification report for the code generated from a small
Embedded Matlab model defining the measurement update
of a simple Kalman filter. The safety requirement, in this
excerpt, concerns establishing that the variable rtb_PP has
been initialized appropriately before its use.

The report first lists all the “relevant” variables. Intuitively,
they are the variables to which reviewers are likely to need
to direct their attention; technically, these are variables for
which the logical proof of safety passed a certain threshold
of complexity. This and other features could be further
customized using style templates.

Then, for each variable in turn, the report explains why the
variable meets the requirement. The explanation can contain
explanations of fragments of code, which can lead to
explanations for other variables (which are cross-linked).
Whenever the tool carries out some analysis using the
prover (e.g., that a code fragment establishes some

Initialization safety for rtb_PP
rtb_PP has 4 relevant occurrences.

Occurrence at line 170
Initialization safety for this occurrence requires that
rtb_PP is initialized at position 0, or formally that
rtb_PP_init(0) == init

holds. This location gives rise to a single verification
condition:

• k2_init_0100

The initialization safety is established at a single
location, lines 161 to 166, by a double nested
linearized for-loop. This location gives rise to two
verification conditions:

• k2_init_0098
• k2_init_0099

It relies, in turn, on the initialization of the following
variables:

• eml_dv4
• eml_dv5

The occurrence of rtb_PP is connected to this
location by a single path.

Figure 2 – Excerpt of Safety Document

6

property), it provides links to the corresponding verification
conditions.

2. CASE STUDY: VERTICAL MOTION SIMULATOR

We have applied AutoCert to analyze code which has been
autogenerated using RTW, from Simulink models provided
by the Vertical Motion Simulator (VMS) facility at NASA
Ames.

Overview of the VMS

The Vertical Motion Simulator (VMS) is a world-class
research and development facility located in the Aviation
Systems Division at NASA Ames Research Center that
offers unparalleled capabilities for conducting experiments
involving aeronautics and aerospace disciplines. The six-
degree-of-freedom VMS, with its 60-foot vertical and 40-
foot lateral motion capability, is the world’s largest motion-
base simulator. The large amplitude motion system of the
VMS was designed to aid in the study of helicopter and
vertical/short take-off landing (V/STOL) issues specifically
relating to research in controls, guidance, displays,
automation, and handling qualities of existing or proposed
aircraft. It is also an excellent tool for investigating issues
relevant to nap-of-the-earth flight, and landing and rollout
studies.

Since the VMS is effectively a piloted vehicle, the system
must be human rated. Specifically, the VMS satisfies NPR
8705.2A, “Human Rating Requirements for Space
Systems”.

Mode Control Unit

The VMS has four hydraulic axes. Three rotational axes
control roll, pitch, and yaw, respectively, and a linear axis
that controls longitudinal movements. The VMS developers
provided a Simulink block diagram of a single hydraulic
rotational servo axis controller for use with our analysis
tool. Although the Simulink block diagram provided had not
yet been implemented into the VMS system at this point,
plans are underway to replace the old analog electronics that
now deliver this functionality. This model was originally
built with MATRIXx System Build block diagrams.
Preliminary testing was conducted with this model
controlling the simulator motion. Later, the model was
manually converted from MATRIXx to Simulink and it is
this Simulink model that is being integrated into the VMS.

The hydraulic axis model will be executed on a VME
platform with a Motorola single board computer. VxWorks
will be used as the real-time operating system. Real-Time
Workshop will be used to generate C code from the
Simulink model. Analog and discrete, input and outputs are
provided by third party vendor VME boards. The model
implements a servo loop controller with a servo current
loop, a velocity loop and a position loop. The model accepts

position and velocity feed forward signals over a fiber optic
digital network and provides current drive to the hydraulic
actuator. Another controller in the VMS is the Mode
Control Unit (MCU) which provides the interface between
the host aeronautic computer and the motion control
electronics and provides manual control for the motion
safety operator. This unit, once implemented with analog
electronics was replaced by a digital controller built up on
VME using MATRIXx and its components, System Build,
AutoCode and RealSim. Plans are in place to convert this
system to Simulink by manually converting the model and
then using Real-Time Workshop to produce C code that will
run under VxWorks.

IV&V

Since the VMS project is moving to the use of a new
autocoder, namely Real-Time Workshop, the engineers are
interested in tools which can ease the transition from the
previous MATRIXx models. The VMS team supplied us
with their Simulink model for the MCU, and described the
settings they typically use for generating code using RTW.
After confirming that we were able to generate the same C
code as the VMS team, for an initial experiment we
analyzed the code for the initialization safety property using
a range of analysis settings.

On most settings, the code could be verified with all VCs
immediately discharged (i.e., proven) by the internal
simplifier (Figure 1). This takes under one minute. At the
other extreme, performing no simplification at all produced
over 700 VCs, which could then be proven using the
theorem prover. Some experimentation was required to
determine the settings which provided the most insightful
output.

V&V activities for the conversions to digital controllers are
done in the VMS at the system level. This is a time
consuming process but is critical to get safety certification
for human occupancy. For the conversion of the MCU from
MATRIXx to Simulink, the VMS team is replacing only the
software on the device and the same hardware platform will
be used. Although the VMS developers have been mainly
concerned with functional tests, AutoCert can obviate the
need to construct a huge test-suite to ensure that no low-
level errors exist, and therefore helps engineers concentrate
on higher-level properties.

3. INTEGRATION WITH MATLAB ENVIRONMENT

In this section we describe the integration of AutoCert with
the Matlab environment, in general, and Real-Time
Workshop, in particular. There are several ways in which
this could be done: via the Matlab command line, using the
RTW configuration capabilities, and through the Simulink
graphical environment. We first describe the Matlab
environment, and then present a number of use cases for the
functionality which we support. Then we describe the

7

implementation approach which we have adopted, which
centers on generating JavaScript from the certification
artifacts, and weaving this with RTW-generated files, in
order to produce browsable verification artifacts. We also
discuss some alternative implementation strategies.

Matlab Environment

Simulink is the MathWorks environment for creating
graphical models of dynamic systems (Figure 3). Real-Time
Workshop is not a standalone tool, but rather a set of menu
options within Simulink, which allow executable C and C++
code to be generated from a model. A further add-on
product, Embedded Coder has various additional features
which are useful for generating C code tuned for embedded
devices. RTW provides browsing capabilities for its
generated code by generating parallel HTML files, which
can be viewed with the Matlab Web Browser. That is, for
every .c and .h file it generates a parallel c.html and h.html
file. The parallel HTML files created by RTW contain
internal hyperlinks to type declarations and external
hyperlinks back to corresponding Simulink model elements.
The Matlab Browser supports a protocol which allows
Matlab commands to be invoked from hyperlinks within
HTML documents. Thus, clicking on a hyperlink to a model
element in the parallel HTML file (within the Matlab
Browser) causes the corresponding box in the Simulink
model to be highlighted. Like any web browser, the Matlab
Browser might not support all of the HTML or related
features used in a particular web site or HTML page.

We integrate AutoCert with RTW as follows. We
interweave the RTW HTML pages with the annotations
obtained from the annotation inference over the parallel C

code generated by RTW. This gives the annotated RTW
HTML page the ability to link to the model. By invoking
Matlab commands inside the Matlab Browser, AutoCert is
able to use Matlab command line calls in order to invoke
system calls which can, in turn, again execute the inference
engine.

Certification Functionality

We describe the integration of AutoCert with RTW from the
point of view of the user via a series of use cases or
scenarios. The integrated tool provides functionality in three
main areas: code creation, certificate and safety document
creation, and tracing between the various artifacts.

Code Creation—The user has two ways of generating code
from their model using RTW. The first is the standard way
by using the RTW menu options inside Simulink. Inside the
menu options, located under Simulation → Configuration
Parameters → Real-Time Workshop, there is a “Generate
code” button which creates the code. There are numerous
other parameters that the user can use to tune model and
target configurations. One of the parameters needed for
AutoCert purposes is the option to generate parallel HTML
files; this parameter is highlighted in Figure 3.

The second way to generate the code is to directly use the
AutoCert menu option, added as a Simulink menu option at
Simulation → Certify Code. The “RTW build code” check
box option in this menu uses the default settings, which are
set inside the RTW Configuration Parameters. When this
option is checked off, the code is created, along with the
RTW HTML files. The check box option provides two
benefits to the user. First, the user can autogenerate code,

Figure 3 – Integrated Certification Menu

8

create RTW HTML files, and call AutoCert all in one menu.
Second, the user has the option to autogenerate code before
or during the use of the AutoCert menu, i.e., the user is not
required to always have code and HTML files pre-
generated, allowing some flexibility. The remaining
parameters in the AutoCert menu relate to certificate
creation, described next.

Certificate Creation—It is assumed that the user has either
already generated code from their model using RTW, or that
otherwise the “RTW build code” option is selected in the
AutoCert menu. Inside the menu, there are two parameters:
select policy and select stage. In order to invoke the
inference engine, the user has to select a safety policy from
a predetermined list of choices - this choice determines
which property of the code is to be certified. AutoCert will
then certify the code via a number of stages. The user can
also specify that a specific variable (“hotvar”) be analyzed
with respect to the safety property (the default case), or that
all variables be checked. Next the user selects a specific
certification “stage”. The possible stages are to generate
annotations, VCs, or certificates. There is also an option to
generate a safety document.

When “Go” is selected in the AutoCert Certify Code menu,
the inference engine is executed (via the Matlab command
line) with the options chosen by the user. The RTW
generated code and HTML files are passed in as input. The
tool then outputs AutoCert HTML pages based on the stage
chosen. After finishing outputting the HTML files, the
AutoCert menu then opens the Matlab Browser using the
Matlab web command, and displays the main certification
HTML page, model_certification.html (Figure 4).

From this certification HTML file, the upper left frame,
labeled “Certification Options”, mimics the options from the
“Certify Code” menu. For flexibility, the user can choose to
create the rest of the stages for this safety policy, or the user
can choose another safety policy and generate those stages.
The browser window is separated into different frames.

Proving VCs and Verifying Proofs—The last phase of
certificate creation is the proof of user selected VCs using
an Automated Theorem Prover (ATP). To provide
additional assurance, AutoCert also allows the user to verify
the proofs as well. This is an additional cross-check of the
proofs generated by the theorem prover by an independent
prover. This can be worthwhile if there is any concern over
a local installation of a prover. Indeed, proofs can be
checked by entirely separate third-party tools. Figure 4
shows the result of checking initialization safety for the
same code as in Figure 3. The lower right hand frame
(labeled VC Navigation) lists the VCs for the safety policy
chosen by the user. The user can select any number of VCs
from the list, and use the upper right hand frame (labeled
Verification Conditions) to prove VCs or verify proofs of
previously proven VCs. As VCs are proved or their proofs
verified, the VC Navigation frame will update with extra
information, such as the “Proof Status” and “Proof Time”,
and whether the proof has been verified.

Tracing between Code and VCs—The user can browse the
generated code, and by selecting a line, see the list of VCs
(VC Navigation frame) that are dependent on that line. The
user can also select a VC and navigate to its source in the
code. This action highlights the lines in the RTW-generated
code (in the center pane of the browser) which “contribute”
to the chosen VC (that is, they had either an annotation from

Figure 4 – Traceable Certification Results

9

which the VCG generated the given VC or contributed a
safety obligation). Figure 4 shows how the tracing
information can be used to support the certification process.
A click on the source link associated with each VC prompts
the certification assistant to highlight in yellow all affected
lines of code, and display the annotations for the selected
VC in the RTW-generated code (center frame). Conversely,
a click on the line number link at each line of code or on an
annotation link will display all VCs associated with that line
or annotation in the VC Navigation frame. In the VC
Navigation frame, a further click on the verification
condition link itself displays the formula which can then be
interpreted in the context of the relevant program fragments.
This helps domain experts assess whether the safety policy
is actually violated, which parts of the program are affected,
and eventually how any violation can be resolved. This
traceability is also mandated by relevant standards such as
DO-178B [9], and supports safety checks, which are often
carried out during code reviews where reviewers look in
detail at each line of the code and check the individual
safety properties statement by statement. Since linking
works in both directions, in combination with RTW’s
bidirectional model-to-code tracing capability, the code-to-
VC tracing provides users with the ability to navigate
between VCs and model elements.

Browsing and Navigation—When the certification HTML
files are created, the user can choose which verification
artifacts (i.e., certification stages) to view. The stage files
are listed in the Stage Navigation frame (lower left hand
frame in Figure 4). When the user clicks a link in that
frame, the browser window displays the appropriate HTML
files. This allows the user to create and view annotations,
VCs, or certificates for different safety policies for the same
autogenerated RTW code without leaving the Matlab
Browser window.

Implementation

We now consider the case of tracing code to VCs in some
detail, as it is the one that requires the most additional

functionality. There are two aspects to consider for
implementing the interface: first, the representation format
and language for implementing the tracing and controls
(implemented as a backend to the inference engine); second,
the mechanism by which tracing information can be
incorporated into RTW-generated code.

AutoCert Backend—There are two alternatives for
representing the tracing information and we discuss these
now. One option is to use PHP (an earlier prototype [5] used
this). However, this would offer little possibility of
integration into the Model Explorer component of RTW.
This is because, unlike JavaScript, PHP must be executed
on a web server. This in turn would require the user to
switch between two different locations: the browser for the
VC traceability and the Model Explorer for the rest of the
functionality provided by RTW. It would also require access
to a PHP enabled web server. Instead, we chose a
JavaScript-based approach.

A JavaScript based implementation allows us to integrate
our functionality into Matlab in the most seamless manner.
This is because JavaScript files are just HTML files with
additional functions (defined in JavaScript) that are
interpreted by the Matlab Browser. That is, they do not
require an external web server. Since the Matlab Browser
resides in the Matlab environment, it is possible to invoke
Matlab command line calls from within the HTML files,
giving access to AutoCert functionality.

The backend needs to support the following commands:

• Make a system command line call from within an
HTML file (JavaScript and Matlab command). This
allows the AutoCert interface to:

o Call the AutoCert inference engine
o Call ATP systems to provide certificates
o Call ATP systems to check certificates

• Highlight/unhighlight HTML code

• Show/hide annotations

Each of these commands can be implemented either directly
in JavaScript or via system calls from Matlab.

Integration with RTW—There are a number of options for
providing links from the code to the VCs. The simplest
would be to generate parallel files that are similar in
structure to the HTML but contain links to the VCs instead
of links back to the model. However, this is not desirable
from a usability standpoint as it would require the user to
co-ordinate between two corresponding and very similar
files. A second approach would be to modify the HTML
documentation templates used by RTW (similar to the way
in which the code generation templates can be customized)

Figure 5 – Structure of Results Page

10

in order to insert our own links (e.g., to the VCs) in addition
to the ones to the model generated by RTW. However, even
supposing this was possible, it would be contrary to the
spirit of a plug-in that does not have access to generator
internals and would therefore violate the principle of
independent certification. Instead, we chose a third
approach, which is to post-process the generated HTML
files to insert additional links and interweave additional
information, such as annotations. The new links at each line
of code and each newly added annotation give traceability
from code to VCs and vice-versa.

For the weaver program, we implemented a parser specific
to RTW HTML output. Because the RTW HTML file is
well-formed, we are able to break the file into three parts:
the header, the body, and the footer (Figure 5). The header
ends and the body begins at the HTML tag of <PRE>, and
consequently the body ends and the footer begins at the
HTML tag of </PRE>. A well-formed document conforms to
all XML syntax rules. The main rule to understand is that
every element with an opening tag is followed by a closing
tag. Within the body, each source line in the HTML page
represents an actual line of RTW code from the
corresponding .c file. Once parsed, each of these source
lines are wrapped with an HTML SPAN tag and given a
unique HTML ID (the ID being the source line number).

The tool extracts a list of inferred annotations from the auto-
generated code, and inserts them into the correct locations in
the RTW-generated HTML extended with annotations and
line numbers. The annotations are also wrapped with a
SPAN tag and given a unique HTML ID (the ID being the
unique annotation name). We use JavaScript to
highlight/unhighlight code and show/hide annotations
corresponding to the selected VC. Further integration could
be achieved if the files generated by AutoCert could be
viewed in the Model Explorer as well as the browser, which
would require modifying either the Matlab generated
contents file or the template that generates it.

Summary

We have described the integration of certification
functionality (AutoCert) with the Matlab/RTW GUI in a
way that preserves the user experience and is as seamless as
possible. Existing RTW navigation is HTML based, so we
have chosen to continue with that in order to preserve the
user experience. A Matlab-based GUI approach was
considered but rejected because it would not have been
consistent with the HTML based approach used by Matlab.

4. CONCLUSIONS

The AutoCert system described here is a push-button
technology for the verification of auto-generated code. The
use of a tightly-coupled generation/analysis tool can allow
system engineers to concentrate on the modeling and design,

rather than worrying about low-level software details. By
providing tracing between code and verification artifacts,
and customizable safety reports, it supports both
certification and debugging. We see AutoCert as a step
towards providing an integrated “executive dashboard” for
V&V.

Although integrated with the code generator, AutoCert is
functionally independent in the sense that it does not rely on
the correctness of any generator components.

The AutoCert technology has a number of advantages over
other approaches. In particular, it can handle code with
arbitrary loops, and can handle code generated from both
continuous and discrete models expressed in Simulink as
well as Embedded Matlab.

The tool has two main benefits: it helps catch bugs in
autocoders, and it helps with the certification process for the
auto-generated code, thus mitigating the risk of using COTS
autocoders that lack a trusted heritage.

Our approach offers a general framework for augmenting
code generators with a certification component, and we have
described an adaptation to MathWorks’ Real-Time
Workshop [8]. We have also developed a set of schemas
adapted to a subset of the Simulink aerospace blockset [7].
Previous work concentrated on in-house code generators [4,
5].

The certification system based on annotation inference as
described here is more flexible and extensible than
decentralized architectures [2] where certification
information is distributed throughout the code generator.
Identifying patterns is an iterative process, but by allowing
tracing between VCs and statements of the auto-generated
code, the tool lets missing annotations and, thus, missing
patterns, be pinpointed more easily.

By raising the level of abstraction at which verification
knowledge is expressed, we are able to concisely capture
many variations of the underlying code idioms. In
particular, we can easily deal with optimizations which
obscure low-level code structure. Indeed, there are other
forms of guidance which are naturally expressed in a
similarly declarative fashion, and we view annotation
schemas as a first step towards a fully programmable
certification language.

Finally, we are investigating other ways in which the
analysis can provide insight into generated code. The safety
report can form the basis of a safety case, that is, a top-down
argument for why the software meets its high-level
requirements3. Another possibility is that by computing the
weakest precondition of (the code generated by) a

3 More precisely, a safety case is a structured argument that presents
evidence for why a system remains safe in the presence of its known
hazards. The first step, therefore, is a full hazard analysis

11

block/submodel, the tool can automatically determine its
interface requirements. The user could also request that a
specific submodel be certified (i.e., the code corresponding
to that submodel).

REFERENCES

[1] Ewen Denney and Bernd Fischer. Correctness of source-
level safety policies. In Keijiro Araki, Stefania Gnesi, and
Dino Mandrioli, editors, Proc. FM 2003: Formal Methods},
volume 2805 of LNCS, pages 894-913, Pisa, Italy,
September 2003. Springer.

[2] Ewen Denney and Bernd Fischer. Certifiable program
generation. In Proceedings of the Conference on Generative
Programming and Component Engineering (GPCE '05),
volume 3676 of LNCS, pages 17-28, Tallinn, Estonia,
September-October 2005. Springer.

[3] Ewen Denney, Bernd Fischer, and Johann Schumann.
An empirical evaluation of automated theorem provers in
software certification. International Journal of AI Tools},
15(1):81-107, February 2006.

[4] Ewen Denney and Bernd Fischer. Annotation inference
for the safety certification of automatically generated code.
In Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE ’06), pages 265–
268, Tokyo, Japan, September 2006. IEEE.

[5] Ewen Denney and Bernd Fischer. A generic annotation
inference algorithm for the safety certification of
automatically generated code. In Proceedings of the
Conference on Generative Programming and Component
Engineering (GPCE ’06), Portland, Oregon, October 2006.
ACM Press.

[6] Tom Erkkinen. Production code generation for safety-
critical systems. Technical report, MathWorks, 2004.

[7] MathWorks Aerospace Blockset.
http://www.mathworks.com/products/aeroblks/.

[8] MathWorks Real-Time Workshop.
http://www.mathworks.com/products/rtw.

[9] RTCA Special Committee 167. Software considerations
in airborne systems and equipment certification. Technical
report, RTCA, Inc., December 1992.

[10] Ingo Stürmer and Mirko Conrad. Test suite design for
code generation tools. In Proceedings of 18th IEEE
International Conference on Automated Software
Engineering}, pages 286-290. IEEE, October 2003.

[11] Ingo Stürmer, Daniela Weinberg, and Mirko Conrad.
Overview of existing safeguarding techniques for

automatically generated code. SIGSOFT Software
Engineering Notes}, 30(4):1-6, July 2005.

[12] Geoff Sutcliffe and Christian Suttner. TPTP home
page. http://www.tptp.org.

BIOGRAPHY

 Dr Ewen Denney (PhD University
of Edinburgh, 1999) has published over 40 papers in the
areas of automated code generation, software modeling,
software certification, and the foundations of computer
science. He has been at NASA Ames for five years, where
he has mainly worked on techniques for reliable automated
code generation.

 Steven Trac (University of Miami,
2008) is a research assistant in the Department of
Computer Science at University of Miami, FL. His main
research interest is in Computational Geometry. He is also
a member of the Automated Reasoning Tools (ARTist)
research group.

